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Abstract 

Remaining committed to a joint goal in the face of many entic-

ing alternatives is challenging. Doing so while cooperating 

with others under uncertainty is even more so. Despite this, 

agents can successfully and robustly use bootstrapping to con-

verge on a joint intention from randomness under the Imagined 

We framework. We demonstrate the power of this model in a 

real-time cooperative hunting task. Additionally, we run a suite 

of model experiments to answer some of the potential chal-

lenges to converging that this model could face under imperfect 

conditions. Specifically, we ask what happens when (1) there 

are increasingly many equivalent choices? (2) I only have an 

approximate model of you? and (3) my perception is noisy? We 

show through a set of model experiments that this framework 

is robust to all three of these manipulations. 

Keywords: Theory of Mind; Bayesian inference; cooperation; 
shared agency  

 

Introduction 

How do you model an intention that lacks a mind? Or rather, 

one that exists — imperfectly — among multiple minds? In-

dividual intentions and their definition have long occupied 

analytic philosophers, generating corresponding computa-

tional models of intentions that address how humans form in-

tentions from beliefs and desires (Bratman, 1987). Despite 

the rich philosophical debate around their form, shared inten-

tions have yet to receive that same rigorous treatment. Here, 

we provide such a formalized computational account of joint 

commitment. Buoyed by this philosophy, we believe our 

model ties together the evolutionary roots of collaboration 

with its modern empirical expressions. Unsurprisingly, creat-

ing such a model requires drawing on a number of different 

fields.  

   To understand the motivation behind this model, it is im-

portant to first discuss Gilbert’s philosophy and her explicit 

definition of shared intentions. In her formulation, cooperat-

ing parties must create a joint commitment in order to share 

their intentions (Gilbert, 1999). They must intend to complete 

a task as a body. Such a commitment is not merely the sum 

of personal intentions to complete a task, but in a sense, a 

subordination of personal intentions to the shared one. This 

allows for partner regulation after shortcomings and requires 

consensus when commitments change. These consequences 

of Gilbert’s formulation provide us with concrete, testable 

predictions that have appeared to varying degrees in empiri-

cal research. 

  In contrast to Gilbert, some philosophers have taken the 

stance that individual agency provides a sufficient framework 

for collaboration (Bratman, 2013). We do not suggest such a 

framework is incompatible with human cognition, but we feel 

Gilbert’s joint commitments offered a more robust structure 

to implement. 

In addition to deep theoretical support from philosophy, 

joint commitments have empirical credence from research in 

developmental psychology. Three phenomena in particular 

emerge in the behavior of young children (<5 years old) while 

engaged in joint commitments which match predictions from 

Gilbert’s philosophy. First, when a partner breaks the com-

mitment, children attempt to re-engage (Gräfenhain, Behne, 

Carpenter, & Tomasello, 2009). This indicates cooperation, 

even at an early age, involves reciprocal expectations of and 

obligations toward one’s partner. Joint commitment can be 

thought of as an implicit social contract; thus, it is natural to 

have a mechanism for regulation, ensuring cooperation is ro-

bust. 

Second, when children break the commitment, they 

acknowledge doing so (Gräfenhain, Behne, Carpenter, & To-

masello, 2009). While engaged in an activity with a partner, 

children were more likely to offer some conspicuous sign that 

they were leaving the activity if both partner and child had 

mutually agreed to engage in the activity in the first place. 

This distinguishes merely “doing the same thing” from truly 

sharing agency. 

Third, children continue engaging in tasks until all partners 

are rewarded even when they have already received their 

share (Warneken, Chen, & Tomasello, 2006). To be clear, 

these actions went against the children’s immediate personal 

utility, but when measured jointly, contributed to the utility 

of the group. Again, commitment to the shared intention pre-

dicts that individuals ought to display such behavior.  

While this research in developmental psychology has con-

tributed to the understanding and formalizing of infant minds, 

it has not yet led to computational models of a joint mind as 

we propose in this paper. To our knowledge, no research has 

proposed a formal computational model of shared intentions 

as we do here, though it is important to note that work has 

been done to model multi-agent collaboration, including col-

laborative norm building (Ho et al., 2016). We believe the 

lack of such a model may stem from the perceived illogical 

nature of separate individuals “sharing” a mind.  
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Nonetheless, we suggest that collaborators imagine such a 

joint mind — an analog of Gilbert’s joint commitment — in 

order to engage in collaborative tasks. Research into social 

contracts supports the idea that cooperators view their collab-

oration from a “bird’s eye perspective”, where all individuals 

are reasoned about as a whole (Carpenter, Tomasello, & Stri-

ano, 2005).  By modeling a controller with this perspective, 

what we refer to as the “Imagined We”, we can offer a valid 

structure for shared agency in human collaboration that ad-

dresses the reality that human minds are private. In this paper, 

we formalize that model and present its performance on a col-

lective hunting task.  

Cooperative Hunting Task 

To test our model, we adapt a previously developed non-co-

operative hunting task for use in a cooperative environment 

(Gao, Newman, & Scholl, 2009). This task lies at the border 

between proposed evolutionary demands for cooperation and 

empirical studies of the same, exploring a current gap be-

tween the two. That is, modern empirical studies (such as the 

developmental psychology studies discussed earlier) cannot 

easily create the conditions which theorists propose led to 

early human collaboration. We believe that computational 

modeling allows for better exploration of those conditions 

and that a hunting environment mimics the broad strokes of 

early human collaboration.  

We populate the environment (Fig. 1) with two hunters 

(also referred to as wolves) and at least two hunting targets 

(also referred to as sheep). Wolves aim to successfully catch 

the sheep while sheep aim to avoid the wolves. Agents in the 

environment can take one of nine actions at a given time-step 

{move in any of the four cardinal directions or the four diag-

onal directions or stay in place} in order to achieve their re-

spective goals. The sheep move faster than the wolves, which 

requires wolves to collaborate by persistently chasing a single 

target. However, they have no predetermined target. Instead, 

they must come to a collective decision about which sheep to 

prioritize, which is accomplished using our model of shared 

agency. 

In this task, wolves do not possess a mechanism for ex-

plicit communication. This is motivated by a prominent the-

ory on the evolutionary origins of communication. It is  

 

  
Figure 1: Cooperative Hunting Task. 

 

believed that communication may only emerge in an envi-

ronment where collaboration already exists (Tomasello, 

2010).Otherwise, there is no adaptive advantage for devel-

oping a method of communication. Thus, any viable model 

of collaboration must first succeed in a scenario that lacks 

communication, and we have built our collective hunting 

task on that assumption.  

Task performance is evaluated through achieved rewards. 

The wolves receive a joint reward (+1) upon the successful 

capture of either sheep. Each wolf also incurs a small nega-

tive reward (-0.01) at every time step to encourage faster 

chasing. Accumulated reward at the end of each trial is used 

as a dependent measure of the model’s performance. 

Though outside the aim of this paper, the psychophysics of 

perceiving non-cooperative chasing has been systematically 

studied in the field of perceived animacy (Gao, Newman, & 

Scholl, 2009; Gao, Scholl, & McCarthy, 2012). While we 

only report modeling results of this cooperative chasing task 

here, we are confident that this task can inspire future psy-

chophysics work beyond this model.  

Demos of our task and model can be found at: 

https://www.youtube.com/playlist?list=PL7v_qAmAikjzYia

-dL0bPB3FCSerqTyC6 

Bootstrapping Imagined We Framework  

Here, we introduce a precise formulation of our model, in-

cluding its computational foundation and its novel approach 

to shared agency. The primary question our model addresses 

is how shared agency can emerge and be maintained in hu-

man collaboration despite a changing environment and with-

out explicit communication.  

Our shared agency model builds on top of Theory of Mind 

(ToM) for individual agents. First, we explore previous work 

using ToM to model individual action planning and inference. 

Using that as a foundation, we introduce the Imagined We 

super agent in order to accommodate collaboration. This Im-

agined We is a reflection of joint commitment that allows the 

wolves to “espous[e] a goal as a body” (Gilbert, 2013). Of 

course, because this model lacks explicit communication, the 

wolves cannot “speak” to each other to create a single, unified 

version of this agent. Moreover, even agents that could com-

municate would find that signaling inaccuracies prevent them 

from creating that unified super agent instantly.    

Instead, we propose a novel bootstrapping method wherein 

successive inference creates distinct super agents, unique to 

each individual agent, that converge over time to the same 

values. This method creates the Imagined We, which we will 

define more rigorously below. 

Theory of Mind 

The computational foundation of the model builds on ToM 

modeling work. ToM uses social reasoning to characterize 

the mind via a set of mental states — beliefs, desires, and 

intentions. These latent states define the ontology of mind. 

Beliefs are the informational states of the mind, desires are 

the motivational states of the mind, and intentions are the de-

liberative states of the mind (Bratman, 1987). For example, 
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someone walks by a $20 bill on the ground without picking it 

up. This can be explained in terms of your mental states: you 

didn't see it (beliefs), you didn't want it (desires), or you 

wanted it but were already committed to something else and 

didn't have the time to stop (intentions). This enumerative ap-

proach to mental states allows for computational accounts of 

action planning. 

Action planning using ToM follows the “principle of ra-

tionality.” Agents are assumed to plan actions that maximize 

their utility while minimizing their costs, all with respect to 

their underlying mental states. Agents select an action in a 

manner equivalent to sampling their available actions from a 

soft-max function typically used for approximately rational 

decision making, shown in Eq. 1. The parameter β controls 

how rational we believe the agent to be. 
 

𝑃(𝐴𝑐𝑡𝑖𝑜𝑛|𝑀𝑖𝑛𝑑) ∝ 𝑒𝛽E[𝑈(𝑎𝑐𝑡𝑖𝑜𝑛,𝑚𝑖𝑛𝑑)] (1) 

 

Rationality provides a mechanism for action selection 

given the state of one's own mind, but it also provides observ-

ers a mechanism to reason about a mind given a set of actions. 

The reverse process of action selection, what is known as in-

verse planning, is an observer's Bayesian inference to figure 

out the most likely mind generating a set of observed actions 

in the environment (see Eq. 2). 

 
𝑃(𝑀𝑖𝑛𝑑|𝐴𝑐𝑡𝑖𝑜𝑛, 𝐸𝑛𝑣𝑖𝑟𝑜𝑛𝑚𝑒𝑛𝑡)
∝  𝑃(𝐴𝑐𝑡𝑖𝑜𝑛|𝑀𝑖𝑛𝑑, 𝐸𝑛𝑣𝑖𝑟𝑜𝑛𝑚𝑒𝑛𝑡)𝑃(𝑀𝑖𝑛𝑑|𝐸𝑛𝑣𝑖𝑟𝑜𝑛𝑚𝑒𝑛𝑡)(2) 

 

This ToM inference framework has been successfully used 

to infer physical goals (Baker, Saxe, & Tenenbaum, 2009), 

social goals (Ullman et al., 2009), and joint beliefs and de-

sires (Baker, Jara-Ettinger, Saxe, & Tenenbaum, 2017) from 

observed actions. Furthermore, inverse planning models have 

also been used to show how children make inferences about 

beliefs and desires to explain a variety of their behavior (Jara-

Ettinger, Gweon, Schulz, & Tenenbaum, 2016; Jara-Ettinger, 

Floyd, Huey, Tenenbaum, & Schulz, 2019). In our model, we 

go beyond existing accounts by using ToM to model a joint 

mind.  

Multi-Agent ToM: Bootstrapping Imagined We 

Let’s presume for a moment that a truly joint mind — rather 

than the Imagined We that we propose — governed shared 

agency. This “We” would be a super agent with its own mind 

containing beliefs, desires, and intentions. Using those men-

tal states, it could rationally control the actions of agents, just 

as a person might rationally control their own hands. Its state 

and action space would simply be the joint state and action 

space produced by concatenating the individual agents’ state 

and action spaces. And assuming the “We” agent governed 

shared agency, the contents of its mental states might be in-

ferred from the actions of the jointly committed agents just as 

they could be inferred for a single agent using ToM. Now, 

understanding that no joint mind actually exists to control 

these agents, let’s consider our proposal, the Imagined We.  

 
Figure 2. Imagined We Representation. 

 

While similar in many ways to a real “We” agent, the Im-

agined We (Fig. 2) presents a unique distinction from stand-

ard ToM modeling. The Imagined We is, indeed, imagined. 

In reality, there is no shared mind to infer. Instead, each col-

laborating agent infers its own version of the Imagined We 

from its actions and its partner’s actions in the shared envi-

ronment. The Imagined We exists only as an inferred distri-

bution of mental states that is unique to each collaborating 

agent.  

Since there is no ground truth of “We” to infer, all agents 

can only reach agreement through bootstrapping (Fig. 3), 

agreement being achieved when the mental states of each 

agent’s Imagined We align with the other agent’s. Essentially, 

this is the process of determining what “We” want to do by 

looking at what “We” have done. We model the convergence 

of the Imagined We with three steps of computation. The Im-

agined We is designed to generically handle different types 

of uncertainty in latent mental states; however, in this collec-

tive hunting task, we only face uncertainty in joint intentions: 

which sheep is the joint goal.  

 

 
Figure 3. Bootstrapping Imagined We. The “IW” nodes rep-

resent the unique inferred distributions of mental states for 

each agent’s Imagined We. The “a” nodes are the actions 

chosen given those inferred distributions, with the solid 

nodes being the actions each agent will actually take and the 

dashed nodes being the expected actions of each agent’s 

partner. These actions are then observed by both agents and 

are used by each agent to update its Imagined We for the 

next time step. 
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(1) Goal Sampling: Each agent simply samples one sheep 

from its own goal distribution to pursue as the goal. This 

sheep becomes its target, and the agent proceeds by expecting 

the other agent will target the same sheep. 

 

 

𝐼𝑥𝑡  ~ 𝑃(𝐼𝑊𝑥𝑡) (3) 

 

(2) Planning: Given a goal, each agent forms a plan of how 

all agents should pursue that goal rationally. The output of 

this planning process includes its own action to take, as well 

as an expectation of other agents’ actions. This is essentially 

a centralized planning process. 

We implemented this rational planning by combining on-

line model-based simulation and off-line deep-reinforcement 

training, a framework inspired by Alpha-zero (Silver et al., 

2018). Known as Monte Carlo Tree Search, the model-based 

simulation involves agents making predictions several time-

steps in the future given their knowledge of the other agents’ 

intentions. At every time step, the agent balances choosing 

actions it currently believes are the most rewarding and 

choosing actions that have gone unexplored. In the figure de-

picting this simulation (Fig. 4), Combining this simulation 

with the offline learning produces a policy as output, defining 

the probability of joint actions conditioning on the current 

state 𝜋(𝑆1𝑡,2𝑡,𝐼𝑥𝑡𝑡).   

Importantly, this rational planning phase does not imply 

human cognition necessarily uses the simulation and off-pol-

icy learning we utilize here. Rather, we assert that humans 

generally make ration plans, and in order to justify the ra-

tional inference of step 3, we ensure the agents act rationally 

with the planning engine described. 

(3) Inference: After taking one’s own action based on the 

policy determined in the planning phase, each agent observes 

the actions actually taken by other agents. This enables a  

 

 
Figure 4: Model-based Simulation. Two wolves (big red cir-

cles) pursuing a single sheep (big green circles) at single 

time step. The model simulates multiple futures, going sev-

eral steps into each. Smaller red and green circles indicate 

possible future locations for the agents. The line thickness 

and circle shade indicate how often a given action has been 

taken in simulation. The best action is the one taken most 

frequently. 

 

 

 
Figure 5: Convergence of Imagined We. The wolves (in red) 

initially infer that both sheep (in grey-green) are equally 

likely to be their joint goal. The exact shade of each sheep 

along the grey-green gradient represents how likely both 

wolves are to believe that a given sheep is that joint goal. In 

each successive time step, the wolves converge on the lower 

sheep, with this convergence visible in the shade change of 

that sheep as well as in the movements of the wolves  

 

Bayesian ToM inference process: conditioning on the ob-

served actions, each wolf computes the posterior probability 

of a given sheep being their joint goal.  

 

𝑃(𝐼𝑊𝑥(𝑡+1)|𝐼𝑊𝑥𝑡 , 𝐴1𝑡, 2𝑡)

∝  𝑃(𝐼𝑊𝑥𝑡)𝑃(𝐴1𝑡, 2𝑡|𝐼𝑊𝑥𝑡)                     (4) 

 

After updating the posterior of the Imagined We mind, 

each agent goes back to step (1), sampling a new goal and 

repeating the process. In Figure 5, we show the repeated im-

plementation of these 3 computational steps as the Imagined 

We minds converge on one sheep as the chosen goal. 

 

Modeling Experiments 

Overview 

Bootstrapping an Imagined We is potentially noisy and faces 

the challenge of convergence, particularly under imperfect 

conditions and high uncertainty. Here we report three model-

ing experiments, each challenging the robustness of the Im-

agined We model in a distinctive way that is inspired by hu-

man collaborative challenges. With these tests, we hope to 

demonstrate both the robustness of this model computation-

ally and the validity of the Imagined We as a potential expla-

nation of shared agency. Due to the stochastic nature of the 

simulations, we use accumulated reward as a dependent of 

performance.  

Expt. 1: Multiple Alternative Targets 

Human collaboration often involves a choice between pursu-

ing multiple equivalent goals. Our first test introduces an in-

creasing number of alternative targets for the wolves to assess 

the model’s performance ability to handle this common real- 
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Figure 6: Results of Experiment 1. 

 

world scenario. Presumably, with an increasing number of 

sheep, the two wolves might experience greater difficulty in 

choosing which sheep to pursue persistently.  

We tested how well wolves were able to cooperate using 

joint commitment in the presence of 2, 4, and 8 equivalent 

goals, with 200 trials for each condition. 

 

Results The performance for each set size condition is de-

picted in Figure 6. The number of alternative targets is not 

significant (F(2, 597) = 0.466, p = 0.628). These results re-

veal that, even in the presence of increasingly many equiva-

lent options, the Imagined We Model achieves effective co-

operative chasing. The agents converge, reaching a consen-

sus through inference about We. 

Expt. 2: Model Precision  

Another common problem for collaboration stems from im-

precise models of other agents. Collaborators do not always 

know the exact capabilities of their partners. Here we manip-

ulate the precision of each agent’s representation of the other 

agent’s action space. 

While each agent’s own action is still selected from a set 

of 9, here they use simplified models of the other agent with 

a smaller action space. A nearest neighbor approach is 

adopted to map the real action to the action perceived by the 

other agent. The set size of the perceived action space is se-

lected from 2, 3, 5, and 9 with 200 trials in each condition.  

 

𝐴𝑥𝑡 =  𝑎𝑟𝑔𝑚𝑖𝑛 ‖𝐴𝑥𝑡 − ‖2    ∈ ′ (5) 

 

 
Figure 7: Results of Experiment 2. 

 

 
 

Figure 8: Results of Experiment 3. 

 

Results Performance as a function of perceived action preci-

sion is shown in Figure 7. One-way ANOVA results reveal a 

significant main effect of action space size (F(3, 796) = 62.91, 

p < .001). Specifically, the accumulated rewards collected by 

the agents in the 5 and 9 action space conditions are signifi-

cantly higher than in the 3 action space condition (t(398) = 

7.297, p < 0.001; t(398) = 6.320, p < 0.001), which is signif-

icantly higher than in the 2 action space condition (t(398) = 

4.233, p < 0.001).  

These results revealed that the Imagined We does not re-

quire a perfectly precise model of other agents in order to 

converge on a shared target. Cutting the perceived action 

space nearly in half does not impact performance. However, 

more simplified action representations with fewer than 5 ac-

tions do significantly reduce the model’s performance.  

Expt. 3: Noisy Action Perception 

Finally, we test the robustness of the Imagined We by intro-

ducing random noise in the agent’s perception. This condition 

mimics human perceptual errors, which are another source of 

complications in collaborative action. A Gaussian noise is 

added to each agent’s perception of the others’ actions. 

Across trials, the variance of the Gaussian noise is selected 

from 0.1, 40, 80, and 1000, with 200 trials in each condition.   

 

𝐴𝑥𝑡  ~ 𝑁 (𝐴𝑥𝑡 , ( ) ) (6) 

 

 

Results Model performance as a function of perception noise 

is shown in Figure 8. One-way ANOVA results reveal a sig-

nificant main effect (F(3, 796) = 96.034 , p < .001). Specifi-

cally, the accumulated rewards collected by the agents in the 

0.1, 40, 80 noise condition are significantly higher than than 

in the 1000 noise condition (t(398) = 12.822, p < 0.001; t(398) 

= 11.895, p < 0.001, t(398) = 13.401 , p < 0.001). These re-

sults demonstrate that the Imagined We can tolerate a mod-

erate amount of perceptual noise and only suffers only with a 

large amount of noise.  

Conclusion 

Inspired by philosophical and developmental studies of 

shared agency, we develop an Imagined We model and test it 
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in a multi-agent cooperative hunting task. The most important 

discovery is that it consistently converges under a variety of 

conditions, as the wolves iteratively come to an agreement on 

which sheep to jointly pursue. This model is relatively robust, 

performing well with a large number of potential targets, a 

reduced perceived action space, and a moderate amount of 

perceptual noise. Our study illustrates the rich potential of 

modeling human-like cooperative intelligence based on in-

sights from developmental studies and analytic philosophy.  

One additional finding concerns the lack of explicit com-

munication in our model. In the designed task, agents had no 

method of communication other than the communication im-

plicit within their movements. The model’s success despite 

this fact emphasizes one of our underlying assumptions - that 

models of collaboration ought to be possible without commu-

nication. This lends further credence to the idea that collabo-

ration predates communication from an evolutionary per-

spective by demonstrating that, at a minimum, collaboration 

in this multi-agent model can exist without communication.  

Finally, though we chose to draw inspiration for the tech-

nical aspects of our model from the philosophy of Margaret 

Gilbert, there are other theories on shared agency. One prom-

inent theory stems from the work of Bratman (2013), who 

uses an existing single agent framework to explain human 

collaboration at the small scale. Though the developmental 

psychology research we cited earlier supports human collab-

oration through the lens of a super agent (a la the theories of 

Gilbert), we believe future research should explore alterna-

tive computational accounts of theories on cooperation as 

other candidates to explain human cognition during collabo-

ration. 
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